Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Disease Surveillance ; 37(6):720-724, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2055479

ABSTRACT

Objective: To assess the risk of public health emergencies, including both indigenous and imported ones, which might occur in the mainland of China in June 2022.

2.
Cell Discov ; 8(1): 87, 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2008266

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), especially the latest Omicron, have exhibited severe antibody evasion. Broadly neutralizing antibodies with high potency against Omicron are urgently needed for understanding the working mechanisms and developing therapeutic agents. In this study, we characterized the previously reported F61, which was isolated from convalescent patients infected with prototype SARS-CoV-2, as a broadly neutralizing antibody against all VOCs including Omicron BA.1, BA.1.1, BA.2, BA.3 and BA.4 sublineages by utilizing antigen binding and cell infection assays. We also identified and characterized another broadly neutralizing antibody D2 with epitope distinct from that of F61. More importantly, we showed that a combination of F61 with D2 exhibited synergy in neutralization and protecting mice from SARS-CoV-2 Delta and Omicron BA.1 variants. Cryo-Electron Microscopy (Cryo-EM) structures of the spike-F61 and spike-D2 binary complexes revealed the distinct epitopes of F61 and D2 at atomic level and the structural basis for neutralization. Cryo-EM structure of the Omicron-spike-F61-D2 ternary complex provides further structural insights into the synergy between F61 and D2. These results collectively indicated F61 and F61-D2 cocktail as promising therapeutic antibodies for combating SARS-CoV-2 variants including diverse Omicron sublineages.

3.
Disease Surveillance ; 36(6):517-520, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1391481

ABSTRACT

Objective: To assess the risk of public health emergencies, both the indigenous ones and the imported ones, which might occur in the mainland of China in June 2021. Methods: An internet based expert counsel was conducted to analyze the surveillance data of public health emergencies and priority communicable diseases in China reported through different channels, and the experts in all provincial centers for disease control and prevention attended this video conference. Results: Generally speaking, it is predicted that the incidence of public health emergencies would be similar in June with May. The risk of imported cases and secondary infections of COVID-19 would continue to exist, but would be controllable. It is the high incidence season of severe fever with thrombocytopenia syndrome and most cases would be sporadic, however, the risk of cluster exits especially in previous epidemic areas. The incidences of food poisoning caused by toxic animal or plant or poisonous mushroom would increase significantly, and the incidences of food poisoning caused by microbe would be high. The earthquake-stricken areas such as Yunnan and Qinghai should further strengthen post-disaster public health responses. The potential flood-stricken areas predicted by the meteorological department need to pay attention to the risks of water-borne, food-borne and vector-borne diseases that may increase after the disaster. Conclusion: Special attention should be paid to COVID-19, and general attention should be paid to severe fever with thrombocytopenia syndrome, food poisoning and natural disaster.

4.
China CDC Wkly ; 4(23): 504-508, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1893721

ABSTRACT

Introduction: Recently, a local cluster epidemic has occurred in Shijiazhuang City, Hebei Province. Failure to promptly identify patients with fever in rural areas was the major reason for this epidemic. Methods: We presented the field evaluation of a new real-time reverse transcription recombinase-aided amplification (RT-RAA) kit incorporating an endogenous internal control in a single-tube format, completed at the Hebei CDC from January 17, 2021 to January 27, 2021. Results: We evaluated the diagnostic performance of RT-RAA assay using automatic extracted RNA of 808 clinical samples. Compared with reverse transcriptase real-time quantitative PCR (qRT-PCR), RT-RAA kit achieved 92.41% sensitivity, 98.78% specificity and a 96.29% coincidence rate, demonstrating an excellent agreement between the RT-RAA assay and qRT-PCR assay. Furthermore, 58 samples were extracted using a manual extraction method within 5 minutes, but only samples with high nucleic acid concentration (cycle threshold value not higher than 32) could be stably detected. Discussion: The RT-RAA is more suitable to meet the needs of rapid, sensitive, and accurate detection in community-level medical institutions.

6.
Nat Commun ; 13(1): 959, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1699459

ABSTRACT

Record rainfall and severe flooding struck eastern China in the summer of 2020. The extreme summer rainfall occurred during the COVID-19 pandemic, which started in China in early 2020 and spread rapidly across the globe. By disrupting human activities, substantial reductions in anthropogenic emissions of greenhouse gases and aerosols might have affected regional precipitation in many ways. Here, we investigate such connections and show that the abrupt emissions reductions during the pandemic strengthened the summer atmospheric convection over eastern China, resulting in a positive sea level pressure anomaly over northwestern Pacific Ocean. The latter enhanced moisture convergence to eastern China and further intensified rainfall in that region. Modeling experiments show that the reduction in aerosols had a stronger impact on precipitation than the decrease of greenhouse gases did. We conclude that through abrupt emissions reductions, the COVID-19 pandemic contributed importantly to the 2020 extreme summer rainfall in eastern China.


Subject(s)
Aerosols/analysis , COVID-19/epidemiology , Greenhouse Gases/analysis , Rain , Vehicle Emissions/analysis , China/epidemiology , Floods , Human Activities/statistics & numerical data , Humans , Pandemics/statistics & numerical data , SARS-CoV-2 , Seasons
7.
Virol Sin ; 37(2): 238-247, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1692813

ABSTRACT

Multiple new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have constantly emerged, as the delta and omicron variants, which have developed resistance to currently gained neutralizing antibodies. This highlights a critical need to discover new therapeutic agents to overcome the variants mutations. Despite the availability of vaccines against coronavirus disease 2019 (COVID-19), the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-CoV-2 variants infection. Here, we show that the nasal delivery of two previously characterized broadly neutralizing antibodies (F61 and H121) protected K18-hACE2 mice against lethal challenge with SARS-CoV-2 variants. The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain (WIV04) and multiple variants, including beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) at 200 or 1000 TCID50, and the minimum antibody administration doses (5-1.25 â€‹mg/kg body weight) were also evaluated with delta and omicron challenge. Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 â€‹mg/kg body weight, and corresponding mice lung viral RNA showed negative, with almost all alveolar septa and cavities remaining normal. Furthermore, low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants, whereas the F61/H121 combination showed excellent results against omicron infection. Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-CoV-2 variants infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Body Weight , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Environ Pollut ; 290: 118118, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1474528

ABSTRACT

The health impact of changes in particulate matter with an aerodynamic diameter <2.5 µm (PM2.5) pollution associated with the COVID-19 lockdown has aroused great interest, but the estimation of the long-term health effects is difficult because of the lack of an annual mean air pollutant concentration under a whole-year lockdown scenario. We employed a time series decomposition method to predict the monthly PM2.5 concentrations in urban cities under permanent lockdown in 2020. The premature mortality attributable to long-term exposure to ambient PM2.5 was quantified by the risk factor model from the latest epidemiological studies. Under a whole-year lockdown scenario, annual mean PM2.5 concentrations in cites ranged from 5.4 to 68.0 µg m-3, and the national mean concentration was reduced by 32.2% compared to the 2015-2019 mean. The Global Exposure Mortality Model estimated that 837.3 (95% CI: 699.8-968.4) thousand people in Chinese cities would die prematurely from illnesses attributable to long-term exposure to ambient PM2.5. Compared to 2015-2019 mean levels, 140.2 (95% CI: 122.2-156.0) thousand premature deaths (14.4% of the annual mean deaths from 2015 to 2019) attributable to long-term exposure to PM2.5 were avoided. Because PM2.5 concentrations were still high under the whole-year lockdown scenario, the health benefit is limited, indicating that continuous emission-cutting efforts are required to reduce the health risks of air pollution. Since a similar scenario may be achieved through promotion of electric vehicles and the innovation of industrial technology in the future, the estimated long-term health impact under the whole year lockdown scenario can establish an emission-air quality-health impact linkage and provide guidance for future emission control strategies from a health protection perspective.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Communicable Disease Control , Environmental Exposure/analysis , Humans , Particulate Matter/analysis , SARS-CoV-2
9.
Viruses ; 13(8)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1335234

ABSTRACT

The development of rapid serological detection methods re urgently needed for determination of neutralizing antibodies in sera. In this study, four rapid methods (ACE2-RBD inhibition assay, S1-IgG detection, RBD-IgG detection, and N-IgG detection) were established and evaluated based on chemiluminescence technology. For the first time, a broadly neutralizing antibody with high affinity was used as a standard for the quantitative detection of SARS-CoV-2 specific neutralizing antibodies in human sera. Sera from COVID-19 convalescent patients (N = 119), vaccinated donors (N = 86), and healthy donors (N = 299) confirmed by microneutralization test (MNT) were used to evaluate the above methods. The result showed that the ACE2-RBD inhibition assay calculated with either ACE2-RBD binding inhibition percentage rate or ACE2-RBD inhibiting antibody concentration were strongly correlated with MNT (r ≥ 0.78, p < 0.0001) and also highly consistent with MNT (Kappa Value ≥ 0.94, p < 0.01). There was also a strong correlation between the two evaluation indices (r ≥ 0.99, p < 0.0001). Meanwhile, S1-IgG and RBD-IgG quantitative detection were also significantly correlated with MNT (r ≥ 0.73, p < 0.0001), and both methods were highly correlated with each other (r ≥ 0.95, p < 0.0001). However, the concentration of N-IgG antibodies showed a lower correlation with the MNT results (r < 0.49, p < 0.0001). The diagnostic assays presented here could be used for the evaluation of SARS-CoV-2 vaccine immunization effect and serological diagnosis of COVID-19 patients, and could also have guiding significance for establishing other rapid serological methods to surrogate neutralization tests for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , COVID-19/virology , Immunoassay/methods , Luminescent Measurements/methods , SARS-CoV-2/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Serological Testing/instrumentation , COVID-19 Vaccines/administration & dosage , Humans , SARS-CoV-2/genetics , Vaccination
10.
Virol Sin ; 36(5): 934-947, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1293454

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated multiple variants resistant to therapeutic antibodies. In this study, 12 high-affinity antibodies were generated from convalescent donors in early outbreaks using immune antibody phage display libraries. Of them, two RBD-binding antibodies (F61 and H121) showed high-affinity neutralization against SARS-CoV-2, whereas three S2-target antibodies failed to neutralize SARS-CoV-2. Following structure analysis, F61 identified a linear epitope located in residues G446-S494, which overlapped with angiotensin-converting enzyme 2 (ACE2) binding sites, while H121 recognized a conformational epitope located on the side face of RBD, outside from ACE2 binding domain. Hence the cocktail of the two antibodies achieved better performance of neutralization to SARS-CoV-2. Importantly, these two antibodies also showed efficient neutralizing activities to the variants including B.1.1.7 and B.1.351, and reacted with mutations of N501Y, E484K, and L452R, indicated that it may also neutralize the recent India endemic strain B.1.617. The unchanged binding activity of F61 and H121 to RBD with multiple mutations revealed a broad neutralizing activity against variants, which mitigated the risk of viral escape. Our findings revealed the therapeutic basis of cocktail antibodies against constantly emerging SARS-CoV-2 variants and provided promising candidate antibodies to clinical treatment of COVID-19 patients infected with broad SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Humans , Spike Glycoprotein, Coronavirus
11.
Cell Discov ; 7(1): 23, 2021 Apr 13.
Article in English | MEDLINE | ID: covidwho-1182823

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.

12.
Sci Rep ; 11(1): 6811, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149746

ABSTRACT

High rate of cardiovascular disease (CVD) has been reported among patients with coronavirus disease 2019 (COVID-19). Importantly, CVD, as one of the comorbidities, could also increase the risks of the severity of COVID-19. Here we identified phospholipase A2 group VII (PLA2G7), a well-studied CVD biomarker, as a hub gene in COVID-19 though an integrated hypothesis-free genomic analysis on nasal swabs (n = 486) from patients with COVID-19. PLA2G7 was further found to be predominantly expressed by proinflammatory macrophages in lungs emerging with progression of COVID-19. In the validation stage, RNA level of PLA2G7 was identified in nasal swabs from both COVID-19 and pneumonia patients, other than health individuals. The positive rate of PLA2G7 were correlated with not only viral loads but also severity of pneumonia in non-COVID-19 patients. Serum protein levels of PLA2G7 were found to be elevated and beyond the normal limit in COVID-19 patients, especially among those re-positive patients. We identified and validated PLA2G7, a biomarker for CVD, was abnormally enhanced in COVID-19 at both nucleotide and protein aspects. These findings provided indications into the prevalence of cardiovascular involvements seen in patients with COVID-19. PLA2G7 could be a potential prognostic and therapeutic target in COVID-19.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , COVID-19/metabolism , Cardiovascular Diseases/metabolism , Macrophages/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/blood , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Biomarkers/metabolism , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/virology , China/epidemiology , Data Mining/methods , Humans , Macrophages/immunology , Macrophages/pathology , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Transcriptional Activation , Up-Regulation
13.
Virus Evol ; 7(1): veaa102, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1145192

ABSTRACT

Analysis of genetic sequence data from the SARS-CoV-2 pandemic can provide insights into epidemic origins, worldwide dispersal, and epidemiological history. With few exceptions, genomic epidemiological analysis has focused on geographically distributed data sets with few isolates in any given location. Here, we report an analysis of 20 whole SARS- CoV-2 genomes from a single relatively small and geographically constrained outbreak in Weifang, People's Republic of China. Using Bayesian model-based phylodynamic methods, we estimate a mean basic reproduction number (R 0) of 3.4 (95% highest posterior density interval: 2.1-5.2) in Weifang, and a mean effective reproduction number (Rt) that falls below 1 on 4 February. We further estimate the number of infections through time and compare these estimates to confirmed diagnoses by the Weifang Centers for Disease Control. We find that these estimates are consistent with reported cases and there is unlikely to be a large undiagnosed burden of infection over the period we studied.

14.
Front Med (Lausanne) ; 8: 585358, 2021.
Article in English | MEDLINE | ID: covidwho-1116697

ABSTRACT

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions.

15.
Genome Med ; 13(1): 30, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1097198

ABSTRACT

BACKGROUND: Since early February 2021, the causative agent of COVID-19, SARS-CoV-2, has infected over 104 million people with more than 2 million deaths according to official reports. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown. METHODS: Using high-throughput sequencing of metatranscriptomic and hybrid captured libraries, we characterized consensus genomes and intra-host single nucleotide variations (iSNVs) of serial samples collected from eight patients with COVID-19. The distribution of iSNVs along the SARS-CoV-2 genome was analyzed and co-occurring iSNVs among COVID-19 patients were identified. We also compared the evolutionary dynamics of SARS-CoV-2 population in the respiratory tract (RT) and gastrointestinal tract (GIT). RESULTS: The 32 consensus genomes revealed the co-existence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in a single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparing allele frequencies of the iSNVs revealed a clear genetic differentiation between intra-host populations from the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events during intra-host migrations. Compared to RT populations, the GIT populations showed a better maintenance and rapid development of viral genetic diversity following the suspected intra-host bottlenecks. CONCLUSIONS: Our findings here illustrate the intra-host bottlenecks and evolutionary dynamics of SARS-CoV-2 in different anatomic sites and may provide new insights to understand the virus-host interactions of coronaviruses and other RNA viruses.


Subject(s)
COVID-19/prevention & control , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , COVID-19/virology , Gene Frequency , Genotype , Haplotypes , Host-Pathogen Interactions , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/physiology
16.
Genome Med ; 12(1): 57, 2020 06 30.
Article in English | MEDLINE | ID: covidwho-618232

ABSTRACT

BACKGROUND: COVID-19 (coronavirus disease 2019) has caused a major epidemic worldwide; however, much is yet to be known about the epidemiology and evolution of the virus partly due to the scarcity of full-length SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genomes reported. One reason is that the challenges underneath sequencing SARS-CoV-2 directly from clinical samples have not been completely tackled, i.e., sequencing samples with low viral load often results in insufficient viral reads for analyses. METHODS: We applied a novel multiplex PCR amplicon (amplicon)-based and hybrid capture (capture)-based sequencing, as well as ultra-high-throughput metatranscriptomic (meta) sequencing in retrieving complete genomes, inter-individual and intra-individual variations of SARS-CoV-2 from serials dilutions of a cultured isolate, and eight clinical samples covering a range of sample types and viral loads. We also examined and compared the sensitivity, accuracy, and other characteristics of these approaches in a comprehensive manner. RESULTS: We demonstrated that both amplicon and capture methods efficiently enriched SARS-CoV-2 content from clinical samples, while the enrichment efficiency of amplicon outran that of capture in more challenging samples. We found that capture was not as accurate as meta and amplicon in identifying between-sample variations, whereas amplicon method was not as accurate as the other two in investigating within-sample variations, suggesting amplicon sequencing was not suitable for studying virus-host interactions and viral transmission that heavily rely on intra-host dynamics. We illustrated that meta uncovered rich genetic information in the clinical samples besides SARS-CoV-2, providing references for clinical diagnostics and therapeutics. Taken all factors above and cost-effectiveness into consideration, we proposed guidance for how to choose sequencing strategy for SARS-CoV-2 under different situations. CONCLUSIONS: This is, to the best of our knowledge, the first work systematically investigating inter- and intra-individual variations of SARS-CoV-2 using amplicon- and capture-based whole-genome sequencing, as well as the first comparative study among multiple approaches. Our work offers practical solutions for genome sequencing and analyses of SARS-CoV-2 and other emerging viruses.


Subject(s)
Betacoronavirus/genetics , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , COVID-19 , Coronavirus Infections , Genetic Variation/genetics , Host-Pathogen Interactions/genetics , Humans , Multiplex Polymerase Chain Reaction/methods , Pandemics , Pneumonia, Viral , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL